1. ПС для культивирования и изучения биохимических свойств.

1.1. Среды Эндо, Левина, Плоскирева . Используют как дифференциально-диагностические элективные среды для культивирования бактерий кишечной группы (содержит лактозу). Микроорганизмы, ферментирующие находящийся в этих средах молочный сахар (лактозу) образуют окрашенные колонии- лактозоположительные (колонии красного цвета с металлическим блеском или без блеска) . Колонии микробов, не ферментирующие лактозу, бесцветные - лактозонегативные – нежно-розовые, прозрачные, пропускающие свет.

К 100 мл МПА (рН 7,6) при температуре 70°С стерильно добавляют 5 мл 20% раствора лактозы и смесь 0,5 мл насыщенного раствора основного фуксина с 1,25 мл свежеприготовленного раствора сульфата натрия.

1.2.Среды с крахмалом определяют микроорганизмы, образующие амилазу. Об этом узнают, прибавив к культуре несколько капель раствора Люголя, - цвет среды не изменяется. Нерасщепленный крахмал дает с этим раствором синее окрашивание.

1.3.Молоко. При росте микроорганизмов, сбраживающих лактозу, свертывается.

2. Коммерческие наборы – для изучения биохимических свойств (определение набора ферментов микроорганизмов для их идентификации).

2.1. Микротесты - системы (МТС). Они представляют собой полистироловые пластины с лунками, в которых содержатся стерильные дифференциально-диагностические среды.

2.2.Системы индикаторные бумажные (СИБ) - дифференциально-диагностические среды на фильтровальной бумаге.

3. Для культивирования и дифференциации анаэробных микроорганизмов: среда Вильсон-Блера . Готовят из мясо-пептонного агара, к которому добавляют глюкозу, Na 2 S0 3 , хлорид железо FeCl 2 . На этой среде возбудитель газовой гангрены образует почернение и разрыв агара. Рост происходит в глубине агара. При этом осуществляется восстановление Na 2 S0 3 в Na 2 S (сульфит натрия), который соединяясь с хлоридом железа, образует сульфат железа черного цвета. Разрыв питательной среды связан с газообразованием.

4. ПС для изучения сахаролитических свойств:

Среды Гисса с углеводами (глюкоза, лактоза, сахароза, арабиноза и другие) в которых выявляют ферментативную активности микроорганизмов. Под действием образующейся при расщеплении углевода кислоты индикатор изменяет окраску среды. Соломенно-желтого цвета среда при положительной реакции меняет цвет на красный или интенсивно розовый, поэтому эти среды названы «пестрый ряд». Микробы, не ферментирующие данный углевод, растут на среде, не изменяя ее цвета. Наличие газа устанавливают по образованию пузырьков в средах с агаром или по скоплению его в «поплавке» на жидких средах.

Пептон - 10 г, хлорид натрия - 5 г, углевод - 10 г, реактив Андреде (фуксин)- 10 мл, вода дистиллированная до 1000 мл, рН после стерилизации 7,2-7,4.

5. ПС для изучения протеолитических свойств:

Среды с желатином . В некоторых бактериях (холерный вибрион, стафилококк, сибиреязвенная палочка и т. д.) протеолитические ферменты выявля­ются путем разжижения желатины.

Среды с молоком. Микроорганизмы, расщепляющие казеин (молочный белок), вызывают пептонизацию молока - оно приобретает вид молочной сыворотки.

Среды с пептоном. При расщеплении пептонов могут выделяться индол, сероводород, аммиак. Их образования определяют с помощью индикаторных бумажек. Фильтровальную бумагу заранее пропитывают определенными растворами, высушивают, нарезают полосками и, после посева культуры на МПБ, помещают под пробку между нею и стенкой пробирки. После инкубации в термостате учитывают результат. Аммиак вызывает посинение лакмусовой бумажки; при выделении сероводорода на бумажке, пропитанной раствором, содержащим ацетат свинца, бикарбонат натрия, происходит образование сульфата свинца - бумажка чернеет; индол вызывает покраснение бумажки, пропитанной горячим насыщенным раствором щавелевой кислоты.

Работа № 2. Характер роста бактерий на питательных средах

(культуральные свойства)

Цель: изучить характер роста бактерий на плотной питательной среде - МПА.

Самостоятельная работа: описать культуральные свойства колоний,выросших на МПА, результаты внести в таблицу

__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

______________________________________________________________________________

Конец работы -

Эта тема принадлежит разделу:

Учебно-методический комплекс по «Микробиологии, вирусологии»

Гбоу впо тюмгма минздрава России.. кафедра микробиологии.. учебно методический комплекс..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Методы создания анаэробных условий
1) Физические методы. Методы основаны на выращивании микроорганизмов в среде без воздуха Посев в среды, содержащие редуцирующие и легко окисляемые вещества: В качестве ред

К работе № 3
Культивирование вирусов Для культивирования вирусов используют: 1) Куриные эмбрионы. Куриный эмбрион - удобная модель для культивирования вирусов с целью получени

Самостоятельная работа во внеурочное время
Что изображено на фотографии? Цель применения устройства? Какие

Оглавление темы "Методы выделения бактерий. Микроскопия. Питательные среды для культивирования бактерий.":









Дифференциально-диагностические питательные среды для культивирования бактерий. Среды содержащие белки. Среды содержащие углеводы. Среды для определения редуцирующей способности бактерий.

Дифференциально-диагностические среды (например, среды Хисса, Кларка ) применяют для изучения и идентификации отдельных типов, видов и групп бактерий. В качестве основы применяют различные органические и неорганические соединения, гидролизаты казеина, пептонную воду, бульон Хоттингера-Мартена , дополненные углеводами, спиртами, мочевиной и другими веществами; при их расщеплении происходит сдвиг рН в кислую (углеводы, спирты, липиды) или щелочную (белки) сторону. Соответственно, выделяют среды с углеводами и спиртами, среды с мочевиной, среды для определения индолообразоваиия, среды для определения протеолитической активности и комбинированные (политропные) среды. В такие среды также часто вносят различные индикаторы (например, бромтимоловый синий, индикатор Андраде, бромкрезоловый пурпурный и крезоловый красный), помогающие визуально определить изменение рН, характерное для различных микроорганизмов. В частности, сдвиг в кислую сторону вызывает покраснение среды с реактивом Андраде или пожелтение при использовании среды с бромтимоловым синим, тогда как при защелачивании реактив Андраде и индикатор бром-тимоловый синий не меняют цвет среды. Все дифференциально-диагностические среды разделяют на четыре основные группы.

Среды, содержащие углеводы или многоатомные спирты . Ферментативное расщепление субстратов приводит к сдвигу рН и изменению окраски среды, а иногда и образованию газа. Наиболее распространены цветные среды с различными углеводами (например, с бромтимоловым синим, индикатором ВР), лакмусовое молоко (среда Минкевича ) и среды Хисса . Из углеводов наиболее часто используют моносахариды (ксилозу, арабинозу, глюкозу, фруктозу, маннозу, галактозу), дисахариды (лактозу, мальтозу, сахарозу), полисахариды (крахмал, гликоген, инулин, декстрин), спирты (дульцит, маннит, сорбит, глицерин) и гликозиды (адонит, инозит, салицин, амигдалин).

Среды для определения редуцирующей способности . В эту группу входят среды с красками, обесцвечивающимися при восстановлении (например, метиленовый голубой, нейтральный красный, индигокармйн), а также среды с нитратами для определения денитрифицирующей активности бактерий (при положительном результате среды окрашиваются в синий цвет).

Среды, включающие вещества, ассимилируемые только определённой группой бактерий . Наиболее известны нитратный агар Симмонса и цитратная среда Козера .

Среда Эндо . К 100 мл нейтрального расплавлен­ного 3%-ного мясопептонного агара прибавляют 1 мл 10%-ного водного раствора кристаллического углекисло­го натрия, выдерживают в текучепаровом аппарате в те­чение10 мин при температуре 100° С, охлаждают до 60° и стерильно прибавляют 1 г химически чистой лактозы, растворенной в 5 мл стерильной воды, и смесь фуксина с безводным сульфитом натрия. Смесь готовят следую­щим образом. Растворяют 0,5 г сульфита натрия в 5 мл стерильной воды и добавляют к 1 мл насыщенного спир­тового раствора основного кристаллического фуксина до тех пор, пока жидкость не станет бесцветной или слегка розоватой. Обесцвеченную смесь фуксина с сульфитом добавляют к расплавленному агару, и последний прини­мает розоватый цвет. После тщательного перемешивания (следят за тем, чтобы не образовывалась пена) среду разливают по чашкам. При остывании среда делается цветной, в толстых слоях имеет розоватый оттенок. На этой среде можно легко отличить кишечную палочку, паратифозных бактерий.

Готовят среду перед посевом. Во избежание покраснения ее защищают от света. Выпускается в виде сухого порошка. Способ приготовления указывается на этикетке.

Среда Гисса . Для изготовления индикатораАндредэ берут 100 мл дистиллированной воды, 0,5 г фуксина кислого и 16 мл 4%-ного водного раствора едкого натра. Выдержи­вают на водяной бане 10 мин. Хранят в темном месте.

Среду с индикатором Андредэ приготовляют следую­щим образом. Готовят пептонную воду. Для этого берут 1% пептона и 0,5% поваренной соли на определенный объем дистиллированной воды. Кипятят до растворения пептона, фильтруют через бумажный складчатый фильтр, устанавливают рН 7,0-7,2. После подщелачивания 10%-ным раствором NаОН снова кипятят в течение 10 мин, фильтруют и к готовой 1%-ной пептонной воде (рН 7,0-7,2) добавляют 1% индикатора Андредэ. К среде с индикатором добавляют требуемые углеводы или многоатомные спирты в количестве 0,5% - 1% (лак­тозу, глюкозу, сахарозу, маннит, дульцит и др.). Среды разливают по пробиркам, снабженным для учета обра­зования газа бродильными трубочками. Вместо трубо­чек иногда помещают кусочки ваты - 0,02 г на пробир­ку. Проводят дробную стерилизацию при температуре 100° С в течение 20 мин три дня подряд.

Правильно приготовленная среда имеет соломенно-желтый цвет.

Среда Кесслера . В 1 л водопроводной воды вносят 50 мл свежей бычьей желчи и 10 г пептона. Кипятят на водяной бане 15 мин, постоянно взбалтывая. После полного растворения среду фильтруют через вату и добавляют 10 г лактозы. Доводят рН до 7,7. К 1 л среды добавляют 4 мл 1 %-ного водного раствора генцианвиолета и разливают в пробирки с поплавками. Стерили­зуют в автоклаве при избыточном давлении 0,1 МПа в течение 15 мин.

Определение рН питательных сред

Для культивирования микробов на искусственных питательных средах особое значение имеет концентрация водородных ионов, так как каждый вид микроба может развиваться только при определенной кислотности или щелочности. Большинство бактерий приспособлено к росту и размножению в нейтральной или слабощелочной среде (рН 7,0-7,6).

Для определения реакции питательной среды применяют два метода: электрометрический (с помощью рН-метра) и колориметрический. В лабораторной прак­тике чаще всего используется наиболее простой колориметрический метод по Михаэлису, основанный на изменении цвета индикатора вследствие диссоциации его в зависимости от концентрации водородных ионов в среде. При определении рН по Михаэлису применяют индикаторы нитрофенолового ряда. Ввиду того, что для выращивания микробов готовят среды слабощелочной реакции, при определении рН среды в качестве индикатора используют метаннитрофенол, который позволяет определять рН в пределах от 6,8 до 8,4. Растворы индикатора готовят на дистиллированной воде и хранят во флаконах из темного стекла с притертой пробкой.

Контрольные вопросы :

    Состав питательных сред.

    Как культивируют в лабораторных условиях микроорганизмы?

    Какие бывают питательные среды по консистенции?

    Как различают питательные среды по происхождению?

    Плотные питательные среды и их характеристика.

    Сухие питательные среды и их характеристика.

    Углеводные питательные среды, их характеристика.

    Автоклавирование.

    Стерилизация текучим паром.

    Пастеризация.

    Стерилизация фильтрованием.

    Как готовят МПБ, МПЖ, МПА?

Дифференциально-диагностические среды - это специальные смеси питательных веществ, применяемые для определения видовой принадлежности микробов и изучения их свойств. При росте бактерий на дифференциально-диагностических средах протекают химические процессы, обусловленные наличием у микробной клетки различных . Одни из них способны расщеплять , другие - , третьи - вызывать реакции окисления и восстановления и т. д. Благодаря действию ферментов в дифференциально-диагностической среде происходят соответствующие изменения.

Дифференциально-диагностические среды можно разделить на четыре основные группы.


Рис. 1-6. Различные формы расщепления желатины. Рис. 7 - 9. Жидкая среда с углеводом и индикатором Андраде: рис. 7 - отсутствие ферментации; рис. 8 - ферментация с образованием кислоты; рис. 9 - ферментация с образованием кислоты и газа. Рис. 10 - 12. Полужидкая среда с углеводом и индикатором BP (из сухой питательной среды): рис. 10 - отсутствие ферментации; рис. 11 - ферментация с образованием кислоты; рис. 12 - ферментация с образованием кислоты и газа. Рис. 13-15. Искусственная лакмусовая сыворотка по Зейтцу: рис. 13 - отсутствие ферментации; рис. 14 - ферментация с образованием кислоты; рис. 15 - ферментация с образованием . Рис. 16 и 17. Молоко с метиленовым синим: рис. 16 - отсутствие редукции; рис. 17 -редукция. Рис. 18 и 19. Среда Симонса: рис. 18 -отсутствие ассимиляции цитрата; рис. 19 - ассимиляция цитрата. Рис. 20 - 24. Лакмусовое молоко: рис. 20 - отсутствие ферментации; рис. 21 - ферментация с образованием кислоты; рис. 22 - ферментация с образованием щелочи; рис. 23 - пептонизация; рис. 24 - редукция. Рис. 25. Разжижение свернутой (в проходящем свете). Рис. 26. Гемолиз на кровяном агаре (в проходящем свете). Рис. 27. Кровяная среда с теллуритом калия.

1. Среды, содержащие белок и выявляющие способность микробов расщеплять белки (протеолитические Свойства): мясо-пептонная «столбиком», свернутая лошадиная или бычья сыворотка, молоко, кровяной агар. При посеве бактерий проколом в мясо-пептонную желатину, «столбиком» в случае расщепления белка наблюдают разжижение среды. При посеве на среду со свернутой сывороткой расщепление белка определяют по разжижению среды и образованию углублений на ее поверхности. Расщепление микробом молока выявляется просветлением или растворением первоначально свернувшегося молока. Наличие гемолитической активности исследуемой культуры проверяют посевом ее в на специальный кровяной агар. В результате разрушения вокруг колоний (например, гемолитического или ) образуются зоны просветления.

2. Среды для выявления способности микробов расщеплять углеводы и высокоатомные (Эндо среда, Левина среда, Расселла среда, Дригальского - Конради среда, Рапопорт - Вайнтрауба среда, Шустовой среда). Для выявления этих свойств микроорганизмов применяют также «пестрый» ряд, т. е. серию пробирок, содержащих , включающие различные углеводы, многоатомные спирты и индикатор. В качестве индикаторов пользуются лакмусовой настойкой или бромтимоловым синим. Разложение какого-либо из углеводов с образованием кислоты выявляют по изменению цвета индикатора, образование газа- по заполнению газом и всплыванию специального стеклянного поплавка в жидкой среде. Или применяют полужидкие Гисса среды (см.) с 0,5% агара с соответствующими сахарами и индикатором Андраде. После посева микроба на эти среды образование кислоты выявляют покраснением среды, а образование газа - по появлению его пузырьков в агаре или по разрыву и сдвигу вверх агарового столбика. К дифференциально-диагностическим средам второй группы относят также крахмальный агар, служащий для определения способности микробов расщеплять крахмал, среду Кларка и др.

3. Среды, на которых выявляется способность микробов обесцвечивать красители, добавленные к бульону: метиленовый синий, тионин, лакмус, нейтральный красный или другие (среда Ротбергера, среда Омелянского). К третьей группе относят также среды с нитратами, служащие для определения способности микробов восстанавливать соли азотной кислоты (нитраты) в соли азотистой кислоты (нитриты) и далее в аммиак или свободный азот.

4. Среды, выявляющие способность микробов усваивать вещества, которые не усваиваются другими микробами, например среда с лимоннокислым натрием (цитратный агар Симонса) для отличия кишечной палочки, которая лишена способности ассимилировать эту среду, от других бактерий кишечной группы или среда с олеиновокислым натрием для дифференциации дифтерийной палочки от ложно дифтерийной и дифтероидов (агар Энжеринга).

К дифференциально-диагностическим средам относят также среды для дифференциации анаэробов, теллуритовые среды для дифференциации дифтерийных бактерий, среды с мочевиной, щелочные среды (Дьедонне агар) для культивирования холерного вибриона и др. См. также Идентификация микробов.

Дифференциально-диагностические среды - специальные смеси питательных веществ, применяемые для определения видовой принадлежности микробов и изучения их свойств. При росте бактерий на дифференциально-диагностических средах протекают химические процессы, обусловленные наличием у микробной клетки различных ферментов. Одни из них способны расщеплять белки , другие - углеводы , третьи - вызывать реакции окисления и восстановления и т. д. Благодаря действию ферментов в дифференциально-диагностической среде происходят соответствующие изменения.

Дифференциально-диагностические среды можно разделить на четыре основные группы.

Рис. 1-6. Различные формы расщепления желатины. Рис. 7 - 9. Жидкая среда с углеводом и индикатором Андраде: рис. 7 - отсутствие ферментации; рис. 8 - ферментация с образованием кислоты ; рис. 9 - ферментация с образованием кислоты и газа. Рис. 10 - 12. Полужидкая среда с углеводом и индикатором BP (из сухой питательной среды): рис. 10 - отсутствие ферментации; рис. 11 - ферментация с образованием кислоты; рис. 12 - ферментация с образованием кислоты и газа. Рис. 13-15. Искусственная лакмусовая сыворотка по Зейтцу: рис. 13 - отсутствие ферментации; рис. 14 - ферментация с образованием кислоты; рис. 15 - ферментация с образованием щелочи . Рис. 16 и 17. Молоко с метиленовым синим: рис. 16 - отсутствие редукции; рис. 17 -редукция. Рис. 18 и 19. Среда Симонса: рис. 18 -отсутствие ассимиляции цитрата; рис. 19 - ассимиляция цитрата. Рис. 20 - 24. Лакмусовое молоко: рис. 20 - отсутствие ферментации; рис. 21 - ферментация с образованием кислоты; рис. 22 - ферментация с образованием щелочи; рис. 23 - пептонизация; рис. 24 - редукция. Рис. 25. Разжижение свернутой сыворотки (в проходящем свете). Рис. 26. Гемолиз на кровяном агаре (в проходящем свете). Рис. 27. Кровяная среда с теллуритом калия.

1. Среды, содержащие белок и выявляющие способность микробов расщеплять белки (протеолитические Свойства): мясо-пептонная желатина «столбиком», свернутая лошадиная или бычья сыворотка, молоко, кровяной агар. При посеве бактерий проколом в мясо-пептонную желатину, «столбиком» в случае расщепления белка наблюдают разжижение среды. При посеве на среду со свернутой сывороткой расщепление белка определяют по разжижению среды и образованию углублений на ее поверхности. Расщепление микробом молока выявляется просветлением или растворением первоначально свернувшегося молока. Наличие гемолитической активности исследуемой культуры проверяют посевом ее в чашку Петри на специальный кровяной агар. В результате разрушения эритроцитов вокруг колоний (например, гемолитического стрептококка или стафилококка) образуются зоны просветления.

2. Среды для выявления способности микробов расщеплять углеводы и высокоатомные спирты (Эндо среда, Левина среда, Расселла среда, Дригальского - Конради среда, Рапопорт - Вайнтрауба среда, Шустовой среда). Для выявления этих свойств микроорганизмов применяют также «пестрый» ряд, т. е. серию пробирок, содержащих питательные среды, включающие различные углеводы, многоатомные спирты и индикатор. В качестве индикаторов пользуются лакмусовой настойкой или бромтимоловым синим. Разложение какого-либо из углеводов с образованием кислоты выявляют по изменению цвета индикатора, образование газа- по заполнению газом и всплыванию специального стеклянного поплавка в жидкой среде. Или применяют полужидкие Гисса среды (см.) с 0,5% агара с соответствующими сахарами и индикатором Андраде. После посева микроба на эти среды образование кислоты выявляют покраснением среды, а образование газа - по появлению его пузырьков в агаре или по разрыву и сдвигу вверх агарового столбика. К дифференциально-диагностическим средам второй группы относят также крахмальный агар, служащий для определения способности микробов расщеплять крахмал , среду Кларка и др.

3. Среды, на которых выявляется способность микробов обесцвечивать красители , добавленные к бульону: метиленовый синий, тионин, лакмус, индигокармин , нейтральный красный или другие (среда Ротбергера, среда Омелянского). К третьей группе относят также среды с нитратами, служащие для определения способности микробов восстанавливать соли азотной кислоты (нитраты) в соли азотистой кислоты (нитриты) и далее в аммиак или свободный азот.

4. Среды, выявляющие способность микробов усваивать вещества, которые не усваиваются другими микробами, например среда с лимоннокислым натрием (цитратный агар Симонса) для отличия кишечной палочки, которая лишена способности ассимилировать эту среду, от других бактерий кишечной группы или среда с олеиновокислым натрием для дифференциации дифтерийной палочки от ложно дифтерийной и дифтероидов (агар Энжеринга).

К дифференциально-диагностическим средам относят также среды для дифференциации анаэробов, теллуритовые среды для дифференциации дифтерийных бактерий, среды с мочевиной, щелочные среды (Дьедонне агар) для культивирования холерного вибриона и др. См. также Идентификация микробов.


Close